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Four-dimensional Galois representations and paramodular forms

Calabi–Yau Galois representations: computations, modularity, congruences. A
search for Laurent polynomials f in dimension 4 that give rise to 4–th order DEs enables one
to approach certain aspects of the Langlands correspondence for GSp(2) in a direct and ex-
plicit way. Recall that for an elliptic curve over the rationals, its L–function is defined as the
Euler product L(E, s) =

∏
bad p(1 − app

−s)−1
∏

good p(1 − app
−s + p1−2s)−1, where the Euler

factor for a prime p of good reduction is
∏1

i=0(1− αip
−s)−1, α0,1 being the eigenvalues of the p–

Frobenius acting in H1
ét(E,Ql). By the famous Taniyama–Weil conjecture, or the BCDT theorem,

the complete L–function L∗(E, s) = π−sNs/2Γ( s
2 )Γ( s+1

2 )L(E, s) with N = NE=conductor of E
extends to an analytic function in the entire complex plane and satisfies the functional equation
L∗(E, s) = ±L∗(E, 2− s). This statement is a direct consequence of the modularity of the q–series
whose Mellin transform is L.

It has been expected, since Langlands, that other motivic L–functions are automorphic (i.e.
can be associated to automorphic representations) as well and can therefore be analytically con-
tinued and satisfy functional equations of a similar shape. The case that lends itself to consid-
eration next after elliptic curves is that of weight 3 four–dimensional Galois representations R of
Calabi-Yau type. Defining the Euler factor of L(R, s) for p of good reduction to be

∏3
i=0(1 −

βip
−s)−1 with β0,1,2,3 the eigenvalues of the p–Frobenius, and fixing the product by finitely many

bad factors determined by the inertia action in a standard way, we ask whether L∗(R, s) =

π−2 sN
s/2
R Γ( s−1

2 )Γ( s
2 )2Γ( s+1

2 )L(R, s) can be analytically continued to an entire function satisfying
L∗(R, s) = ±L∗(R, 4− s). Getting a grip on these L’s poses a challenge: in contrast to the motivic
weight 1 situation (which should be thought of as the prototypical CY case with h10 = h01 = 1)
where a rank 2 Galois representation can be realized geometrically as arising in the H1

ét of some
elliptic curve simply by Weierstrass, we do not know of a similar way to realize weight 3 CY Galois
representations with h30 = h21 = h12 = h03 = 1 in the H3 of a Calabi-Yau type variety via any
kind of a uniform construction! In the absence of this, the technology leans naturally toward our
methods: one systematic way to catalog rank 4 symplectic representations à la Cremona is to
study the relevant pieces in the middle cohomology of the hypersurfaces Et : f = t of our Laurent
polynomials in an intelligent manner. The p-adic methods originating in Dwork’s work use the
classical period/DE directly, making this approach much more cost-efficient than the naive point
count followed by stripping away the contributions from the parasitic constituents of H3(Et).

More conceptually, given such a 4-dimensional Galois representation obtained, say, as a col-
lection of the Frobenius eigenvalues for each Fp, we shall try, in the framework of the Langlands
philosophy, to find an automorphic object, typically a paramodular form, that corresponds to it,
thereby linking our study to work of Gritsenko, Poor, Weissauer and Yuen. Independently of
that, one can always study its L–function for the standard analytic predictions (analytic continu-
ation/functional equation) numerically.

An exciting arithmetic prediction about the Galois representations arising in the level hyper-
surfaces of the LG models of Fano varieties is that their congruence properties [in the sense of
Serre’s explanation of the famous Ramanujan mod 691 congruence] should reflect the numerical
invariants of the respective Fanos. In particular, the anticanonical degree is expected to appear
in many cases as the Bloch-Kato factor of certain critical L-values. A prototypical example was
worked out very recently by Dummigan and Golyshev for the variety V22 in dimension 3. Perhaps
even more exciting is the existence of Galois reps possessing double congruences. In our notation,
this means, roughly, the existence of two congruence moduli N1, N2 such that β1 = p, β2 = p2

mod N1 and β0 = 1, β3 = p3 mod N2 for almost every prime p. Predicted by Golyshev, the
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first example of the “second congruence” phenomenon was found numerically by Buzzard with
NR = 61, N1 = 43, N2 = 19 (the first congruence had been discovered earlier by Poor and Yuen
in this case).

Objectives. General automorphy theorems for GSp(2), being a highly techhnical and spe-
cialized subject, are per se clearly beyond the scope of our study. Still, as the main outcome of
the first year, we expect to have amassed a large database of rank 4 motivic L–functions of low
conductors (a ‘GSp(2) Cremona table’) which could be analyzed individually according to the
standard methodology of arithmetic geometry; in fact, what Swinnerton–Dyer did many decades
ago for elliptic curves makes perfect sense in the GSp(2) case today. We will study motivic pieces
of the Siegel modular threefolds and consistently try to associate those, and paramodular forms,
to the known L–functions. We will study special values of these L–functions, and specifically L(2),
looking for the numerical evidence in support of Deligne’s conjecture on critical values. We will
study the congruence properties of the L–functions and compute numerically some of the Bloch–
Kato factors, verifying at least some part of the Bloch–Kato predictions numerically. We will try
to relate the congruence moduli to the motivic torsion in the Siegel threefolds, on the one hand,
and to the characteristic classes of the Fano varieties whose Landau–Ginsburg models contain our
CY motives in the fibers, thereby relating the Ramanujan–Harder phenomenon to topology in a
not–quite–expected way.

(Para)modularity expectations in more detail. This is a proposal about the modu-Noriko:
larity/automorphy of four-dimensional Galois representations arising from Calabi-Yau threefolds
over Q with all the Hodge numbers of the third cohomology gorups equal to 1. This gives rise to
four-dimensional Galois representations associated to such Calabi–Yau threefolds. The L-series of
such Calabi-Yau threefolds may be computed in principle by finding local Euler factors for good
primes, which boils down to counting numbers of rational points over finite fields.

There are many Calabi-Yau threefolds with the above property. Some are realized as mirror one-
parameter families of Calabi-Yau threefolds. Hypersurfaces, complete intersections of hypersurfaces
in weighted projective spaces, or toric constructions would give explicit defining equations. First,
we would like to have a huge data basis for these Calabi-Yau threefolds. Then for each Calabi-Yau
threefold, we wish to determine the conductor (i.e., product of powers of bad primes). Finally, we
try to compute the Euler factors for each good prime. The Euler factors are derived from degree 4
polynomials with integer coefficients. We assume that these degree 4 polynomials are irreducible
over Q.

In order to address the Langlands correspondence, we need to have some modular objects. In
our case, we will consider paramodular subgroups of Sp(4,Z). This is motivated by a paramodular
conjecture for abelian surfaces by Brumer and Kramer. Their conjecture is that every abelian
surface A over Q with condoctir N and End(A)=Z should be paramodular, that is, there eixsts
a paramodular Siegel modular form F of weight 2 and genus 2 with rational eigenvalues which
determine the L-series of A. In our case, we make a very crude conjecture

Conjecture: Every Calabi-Yau threefold X over Q with all Hodge number of the third cohomol-
ogy group equal to 1 is paramodular, that is, there exists a Siegel modular form of weight 3, genus
2 with conductor N for some subgroup of paramodular group, which determine the L-series of X.

Our goal is to supply examples (or counter-examples) in support of this conjecture.
Duco:

Non-trivial pencils of Calabi-Yau threefolds give rise to motivic local systems with h30 = h21 =
h12 = h03 = 1 and thus one-parameter families of 4-dimensional Galois-representations and L-
functions. Conjectures of Golyshev aim to characterise the common feature of these one-parameter
families of 4-dimensional Galois-representations in terms of bi-congruences and seek a modular in-
terpreteation of such pencils. Apart from the pencils arising from Laurent polynomials in dimension
four, there are various other sources of examples. An attractive class are the fibre products of ratio-
nal elliptic surfaces, introduced by C. Schoen. The cases leading to 4-dimensional H3 were studied
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by Cynk and van Straten. For these spaces an LG-realisation as Laurent-polynomial is often not
known. These examples give rise to Calabi-Yau operators: fourth order DE-operators which are
amendable to the Dwork-method for computing the Euler-factors for fibres of the family. In recent
years, this method was explored by Candelas, de la Ossa and van Straten, who extended the scope
of the Dwork-method by starting at a point of maximal degeneration. It turns out that the initial
data needed are determined by mirror Fano-data and p-adic ζ(3), thus giving a glimps of conjec-
tural p-adic Gamma-conjectures. Using this input, L-factors can be computed quickly for virtually
all Calabi-Yau operators. Using this method, versions of the the bi-congruences predicted by Goly-
shev were found recently by Candelas, de la Ossa and van Straten. Another class of examples is
provided by special double octics, for which there are many examples where the corresponding DE
does not have a point of maximal degeneration, the so-called orphans. For these the computation
of the Euler-factors of the L-function from the DE is not straightforward. The algebra-geometrical
study of the simplest Siegel-modular 3-folds by van Geemen, Nygaard, van Straten and Cynk,
Freitag, Salvatti-Manni lead to many special Calabi-Yau 3-folds with h30 = h21 = h12 = h03 = 1.
So these are special members of 1-parameter families and it would be very interesting to obtain
explicit descriptions of these families.

Rainer: One of the missing links to arithmetic in the study of modular forms on GSp(4) comes from the
conjectured, but unexplained relationship between Siegel modular forms and algebraic modular on
certain inner forms. Different to the analogous situation for Gl(2), where this is clearly established
by the Jacquet-Langlands lift, only partial results are known for Siegel modular forms. For instance,
the existence of L-series for algebraic modular forms, satisfying all the expected properties, would
be achieved with establishing this lift. But, seen the other way round, one could also try to construct
such L-series a priori and then attempt to solve the remaining question by converse theorems. To
establish the connection between Siegel modular forms and algebraic modular forms should be
important not only for analytic aspects, say, concerning L-series, but even more significantly for
some arithmetic questions like congruences between modular forms and the mod p-geometry. It
seems to me that certain unexpected new phenomena might occur at various stages. I would like to
formulate this topic as one of the important desiderata in order to probe deeper into the arithmetic
of Siegel modular forms.

There are several approaches to attack the problem. One obvious strategy might be to use the
Selberg trace formula or converse theorems, but there are different and more arithmetic options,
for instance in the spirit of p-adic uniformation a la Cerednik-Drinfeld. The underlying question,
on the other hand, is furthermore connected to the study of theta lifts relating these things to half
integral modular forms a la Shimura and Waldspurger. If one believes in the analogy to modular
curves, then some of the really subtle arithmetic information should be also encoded in here. Yet,
although related, this is just another theme of interest. All in all, the questions centering around
these topics are interesting enough from their own point of view, while they are also clearly related
to the task of numerically providing something like the analog of Cremona’s tables.

Neil: Let F be a genus-2 cuspidal Hecke eigenform of weight 3 and paramodular level N , in the minus space.
For a prime p not dividing N , let the Euler factor in the spinor L-function of F be fp(p−s)−1. A
good way to find examples and the fp(X) numerically appears to be using algebraic modular forms
for the orthogonal groups of quinary quadratic forms. There is some data already (for some prime
levels) in the Ph.D. thesis of Voight’s student Hein [28, Appendix B]. It would be very nice to see
an example of a CY 3-fold whose Frobenius eigenvalues appear to match some computed Hecke
eigenvalues. If, for such an example, one then found an actual Siegel modular form, rather than just
an algebraic modular form, so as to have an associated Galois representation, then maybe following
the method applied by Brumer et.al. to abelian surfaces [6], one could even prove modularity.
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Various possible congruences of Hecke eigenvalues for F (modulo a prime divisor q in a suffi-
ciently large coefficient field) include the following:

(1) fp(X) ≡ (1 − pX)(1 − p2X)(1 − apX + p3X2) (mod q), where g =
∑
anq

n is a nor-
malised newform of weight 4 and level N . (Congruence of Hecke eigenvalues between
F and a Gritsenko lift.) Given fp(X) for several p, it is easy to check for this ex-
perimentally by factorising the fp(1/p) and looking for q as a common divisor, then
looking in LMFDB for a g that fits. Examples visible in Hein’s data include (N, q) =
(61, 43),(73, 13),(89, 29),(113, 13),(167, 23),(173, 7) and (197, 13).

Such a congruence implies reducibility of an associated 4-dimensional mod q Galois
representation. According to the Bloch-Kato conjecture, q (as the order of an element
in a Selmer group arising from an extension of mod q Galois representations) should
divide the numerator of a canonically normalised algebraic part of L(g, 3) (or strictly-
speaking the incomplete LN (g, 3)). This can be confirmed in any given case by exact
computation with the Magma command LRatio. A recent preprint of Jim Brown and
Huixi Li (Congruence primes for automorphic forms on symplectic groups, http://jim-
brown.oxycreates.org/research.html) deals with the converse. Given g of square-free level
N and weight 2k−2, with minus sign in the functional equation of its Hecke L-function, if
q divides a normalised L(g, k) then, under weak technical conditions, they prove a congru-
ence of Hecke eigenvalues between the Gritsenko lift (paramodular Saito-Kurokawa lift) of
g and a non-lift Siegel Hecke eigenform of weight k and paramodular level N . They also
give an application to the Bloch-Kato conjecture. See their Theorems 6.9 and 7.4. The
case k = 3 is relevant here.

Also, q2 (with q as the order of a “global torsion element”) should divide the denominator
of a suitable algebraic part of the central value L(spin, F, 2). To cancel an unknown Deligne
period, we should look for q2 in the numerator of the ratio L(spin, F, χD, 2)/L(spin, F, 2),
where χD is a real quadratic character and

(
D
N

)
= 1. These twisted central spinor L-

values appear in a generalisation of Böcherer’s conjecture, due to Ryan and Tornaria [37,
Conjecture B](ArXiv:1206:0072v1, 2018). As explained in a beautiful observation, their
Proposition 5.1, the divisibility we seek can be deduced from their Conjecture B if one has a
congruence (mod q) of Fourier coefficients between F and a Gritsenko lift (not necessarily
a Hecke eigenform), of the type appearing in [36, §8] (Poor and Yuen), where paramodular
forms are constructed using theta blocks. Moreover, the experimental congruence of Hecke
eigenvalues can easily be proved from such a congruence of Fourier coefficients. Thus at
least the examples (N, q) = (61, 43), (73, 13) are proved.

(2) fp(X) ≡ (1−X)(1− p3X)(1− pbpX + p3X2) (mod q), where h =
∑
bnq

n is a normalised
newform of weight 2 and level N . Given fp(X) for several p, it is easy to check for this ex-
perimentally by factorising the fp(1) and looking for q as a common divisor. Experimental
examples visible in Hein’s data include (N, q) = (61, 19),(73, 3), (79, 2), (89, 5), (113, 2).
No example of such a congruence has actually been proved. Perhaps it would be possible in
some space of algebraic modular forms. If f =

∑
cnq

n is a normalised newform of weight
4 and level ` such that cp ≡ 1 + p3 (mod q) for all p 6= ` (e.g. one can do this with ` = 37
when q = 19), then the Bloch-Kato conjecture predicts that q (maybe sufficiently large) di-
vides the numerator of an algebraic part of the incomplete L-value L`N (f⊗h, 3). In accord
with this, q divides the missing Euler factor at 61, as a consequence of cp ≡ 1+p3 (mod q)
with p = 61 (or, more generally, dividing N). There doesn’t seem to be any L-function
where one would expect to see a q in the denominator as a result of the congruence.

Gonzalo:

Here’s a short description of the method for computing algebraic modular forms for the orthog-
onal group:
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The basic idea is to pick a suitable genus of positive definite quinary quadratic form. Associated
to this genus is a certain space of algebraic modular forms, and one can use neighbouring lattice
methods to construct the Hecke operators. This is a generalization of a method of [4] in the
case of ternary quadratic forms (see [16], [28], [32]). The spaces thus constructed contain lifts of
modular forms for GL(2), however it was noted by Hein-Ladd-Tornara that it’s easy to compute
the kernel of a theta map which will contain all the non-lifts in the space. Note also that, as
in Birch method, this is expected to compute only forms with funcional equation with sign +1,
however this difficulty can be overcome using characters of the spinor norm (this has been worked
out in the case of ternary quadratic forms by Tornaria, Rama, Hein-Tornaria-Voight, and it should
work the same for quinary quadratic forms).

Cris, David
and Jerry: General existence results for weight three nonlift paramodular cusp forms of prime level are

due to Ibukiyama [29], who gave dimension formulae for weight three paramodular cusp forms
of prime level, S3 (K(p)). In conjunction with the known dimensions of spaces of Jacobi forms,
one can see that the first weight three nonlifts with rational eigenvalues occur at levels p = 61,
73, and 79. These same levels had been identified in the work of Ash, Gunnells, and McConnell
[2] as occurring in H5 (Γ0(N),C); the congruence subgroup Γ0(N) ⊆ SL4(Z) is defined by having
a bottom row in (NZ, NZ, NZ,Z). There is still no known mapping from nonlift paramodular
cuspidal eigennewforms with rational eigenvalues into the cohomology space H5 (Γ0(N),C), but
perhaps one can be constructed using the orthogonal point of view. These paramodular cusp
forms for p ∈ {61, 73, 79} were directly constructed by Poor and Yuen in [36]. The eigenforms were
constructed there as rational functions of Gritsenko lifts of theta blocks. Using this construction,
the 2-, 3-, and 5-Euler factors were computed, integral Fourier expansions of content one were
given, and congruences modulo ` for the Fourier expansions of these nonlift eigenforms to those
of Gritsenko lifts were identified in each case. For p = 61, we have ` = 43; for p = 73, we have
` = 3, 13; and for p = 79, we have ` = 2. In view of the results in [26], it is clear that these same
constructions may be written as a sum of Gritsenko lifts and a Borcherds product.

Borcherds products have turned out to be a very useful tool for the construction of paramodular
cusp forms. Indeed, there is an algorithm on the arXiv [35] for classifying all Borcherds products in
all spaces Sk (K(N)). The efficient implementation of this algorithm relies on a good knowledge of
a determining number of Fourier–Jacobi coefficients for a given Sk (K(N)), and the algorithm has
already been successfully used in [3] and in [33]. Even very basic assertions, such as knowing that
a certain paramodular form is an eigenform, hinge on a rigorous spanning set for Sk (K(N)). To
this end, upper and lower bounds for dimSk (K(N)) must be computed separately. For squarefree
N there is a dimension formula, due to Ibukiyama and Kitayama [30]. For N not squarefree, the
upper bounds are approachable via the method of Jacobi restriction [31, 5, 34], which classifies
possible initial Fourier–Jacobi expansions of paramodular cusp forms. Lower bounds, on the other
hand, require the construction of paramodular forms by techniques such as Borcherds products
and Hecke spreading of Borcherds products, compare [34].

Once a relevant space of paramodular forms has been spanned, typically because there is a
matching arithmetic object as a candidate for modularity, one can broach the separate question of
computing enough Euler factors to rigorously prove this modularity. In weight two, such a strategy
has recently had success in [6] for proving examples of modularity for typical abelian surfaces
defined over Q. The number of Euler factors that can be computed is sensitive to the manner
of construction of the paramodular eigenform, but good results can be expected for paramodular
eigenforms which are constructed as rational functions of Gritsenko lifts of theta blocks. One
natural arithmetic candidate for modularity in the weight three case is given by the class of
hypergeometric motives.
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Dave Roberts sent Poor, Shurman, and Yuen (henceforth PSY) some hypergeometric motives
with motivic Galois group GSp(4). One, for example, had conductor N = 257, and PSY did
find a new form with rational eigenvalues in S3 (K(257)), whose 2-Euler factor in the arithmetic
normalization was

1 + x+ 6x2 + 8x3 + 64x4.

This matched the 2-Euler factor that Dave Roberts had. The paramodular Atkin–Lehner sign here
was −1. Such hypergeometric motives are good candidates for examples of rigorous modularity
proofs following the pattern of [6]. Indeed, the theory of Galois representations is better understood
in weight three than in weight two, and the existence of dimension formulae for prime level (and at
least conjecturally for squarefree level) makes the weight three case look more approachable than
the weight two case. PSY have recently written a number of new programs aimed at gathering
computational data, both rigorous and heuristic, about weight three paramodular cusp forms.
However, the dimensions of the weight three spaces grow more quickly than in weight two.

Also, Henri Cohen, in his Computing L-functions: A survey [11], says that the Dwork quintic
pencil

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − 5ψx1x2x3x4x5, (ψ ∈ Q)

can give a hypergeometric motive of conductor N = 525, which should be modular with respect
to a paramodular newform in S3 (K(N)). So far, however, no arithmetic geometer has presented
any Euler factors for this case. Of course, the level N = 525 is not squarefree, but such examples
have in principle been dealt with in [33], where N = 16 was successfully considered.

Due the start-up costs of beginning a computation, the best manner in which to proceed is for
PSY to respond to motives with known conductors and Euler factors, trying to locate paramodular
newforms that match them. If anyone wants to send PSY such a target, we will start working on
that case to provide at least heuristic information.

People and collaborations. We intend to collaborate or stage regular meetings with:

(1) S. Bloch (Chicago)
(2) T. Bridgeland (Sheffield)
(3) Ph. Candelas (Oxford)
(4) A. Corti (London)
(5) N. Dummigan (Sheffield)
(6) S. Galkin (Moscow)
(7) V. Golyshev (Moscow)
(8) V. Gritsenko (Lille, Moscow)
(9) M. Kontsevich (Bures–sur–Yvette)

(10) A. Mellit (Vienna)
(11) X. de la Ossa (Oxford)
(12) A. Pacetti (Buenos Aires)
(13) C. Poor (New York)

(14) N. Shepherd–Barron (London)
(15) J. Shurman (Portland, OR)
(16) D. van Straten (Mainz)
(17) G. Tornaria (Montevideo)
(18) F. Villegas (Trieste)
(19) M. Vlasenko (Warsaw)
(20) J. Voight (Hanover, NH)
(21) R. Weissauer (Heidelberg)
(22) Y. Yang (Taipei)
(23) D. Yuen (Hawaii)
(24) N. Yui (Kingston)
(25) D. Zagier (Bonn)
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